Applicability of the Aquifer Impact Model to Support Decisions at a CO₂ Sequestration Site

Diana Bacon¹, Randall A. Locke II³, Susan Carroll², Abbas Iranmanesh³, Kayyum Mansoor², Bracken Wimmer³, Liange Zheng⁵, Hongbo Shao³, Elizabeth Keating⁴, Sallie Greenberg³

Aquifer Impact Model (AIM)

- AIM includes polynomial or look-up table based reduced-order ۲ models (ROMs) that predict the impact of CO₂ and brine leaks on overlying aquifers
- The ROMs in AIM •
 - reproduce the ensemble behavior of large numbers of simulations
 - are well-suited to applications that consider the effect of parameter sensitivity and uncertainty on the risk of CO₂ leakage to groundwater quality
 - include adjustable input parameters so that they may be applied to other aquifers with similar hydrogeologic or geochemical characteristics

Criteria for Application of AIM to a New Site

1. Do the physical and chemical characteristics of the aquifer at the new site fall within the uncertainty range of existing ROM input parameters? Are ROMs sensitive to these parameters? **Existing ROM may be useful Existing ROM should** not be used 2. Do the potential leakage scenarios at the site fall within the range considered by our ROMs? (leak rates, brine composition)

Comparison of Confined Alluvium ROM Parameters to Illinois Basin – Decatur Project Observations

	Parameter	Confined Alluvium ROM Parameters ¹	IBDP Pre-Injection Observations ²	Parameter vs. Observations
Adjustable Non- adjustable	Initial pH	7.6	7.31 (average)	Higher
	pH No-Impact Threshold	6.625	6.81 (5 th percentile)	Lower
	Initial TDS	570 mg/L	1152 (average)	Lower
	TDS No-Impact Threshold	1300 mg/L	1358 (95 th percentile)	Similar
	Sand fraction	0.35 – 0.65		Uncertain
	Correlation length X	200 – 2,500 m		Uncertain
	Correlation length Z	0.5 – 25 m		Uncertain
	Permeability sand	10 ⁻¹⁴ – 10 ⁻¹⁰ m ²	10 ^{-11.8} – 10 ^{-10.4} m ²	Within range
	Permeability clay	10 ⁻¹⁸ – 10 ⁻¹⁵ m ²		Uncertain
	Goethite volume fraction	0 – 0.15		Uncertain
	Illite volume fraction	0-0.2		Uncertain
	Kaolinite volume fraction	0 – 0.15		Uncertain
	Smectite volume fraction	0-0.3		Uncertain
	Cation Exchange Capacity	0.1 – 40 meq/100 g		Uncertain

¹Confined alluvium ROM chosen because of similarity in lithology between modeled sand and clay layers and glacial outwash deposits at IBDP site.

²Observations from monitoring wells ADM-G101, ADM-G102, ADM-G103, ADM-G104 between 8/12/2010 and 10/25/2011. Injection began in November, 2011.

Conclusions

Parameter Sensitivity

Aquifer Volume exceeding noimpact threshold (log scale)

- Iranmanesh, A., R. A. Locke and B. T. Wimmer (2014). "Multivariate statistical evaluation of groundwater compliance data from the Illinois Basin - Decatur Project." <u>12th International Conference on Greenhouse</u> Gas Control Technologies, Ghgt-12 63: 3182-3194.
- Keating, E., D. Bacon, S. Carroll, K. Mansoor, Y. Sun, L. Zheng, D. Harp and Z. Dai (2016). "Applicability of aquifer impact models to support decisions at CO₂ sequestration sites." International Journal of Greenhouse Gas Control 52: 319-330.
- Keating, E. H., D. H. Harp, Z. Dai and R. J. Pawar (2016). "Reduced order models for assessing CO₂ impacts in shallow unconfined aquifers." International Journal of Greenhouse Gas Control 46: 187-196.
- Hydraulic parameters and source term magnitude are more sensitive than clay fraction or CEC
- More information on sand fraction and correlation lengths could reduce uncertainty
- Some non adjustable parameters are significantly different than observations

¹Pacific Northwest National Laboratory

- ³University of Illinois, Illinois State Geological Survey
- ⁴Los Alamos National Laboratory
- ⁵Lawrence Berkeley National Laboratory

Diana Bacon, Ph.D.

Pacific Northwest National Laboratory P.O. Box 999, MS-IN: P7-54 Richland, WA 99352 (509) 372-6132 diana.bacon@pnnl.gov